zum Teil noch in der Nachblüte. In Lundsgaard hingegen reifte der gesamte Versuch zur Druschreife ab und konnte am 12. Oktober unter besten Bedingungen gedroschen werden. Um den Versuch in Schuby dreschen zu können, wurde er am 10. Oktober, analog zu den Ackerbohnen, nach Beantragung einer einzelbetrieblichen Ausnahmegenehmigung sikkiert. Am 19. Oktober wurde bei sehr hoher Feuchtigkeit gedroschen.

Druschreife: Samen klappern in den Hülsen

Dort, wo die Bedingungen in den Wiederholungen homogener waren, zeigten sich Sortenunterschiede in den Versuchen zur Ernte deutlich. Die Sorten ,Mayrika' und ,Toutates' zeigten in Schuby in allen Wiederholungen, dass sie Ungleichmäßig und unvollständig besser in den GPS-Versuch gehört hätten. Sie erreichten die Drusch-

abgereifte Versuchsparzelle Fotos: Dr. Christian Kleimeier

Uneinheitliches Erntegut im Sack. Hier dürfte der Reinigungsaufwand enorm sein

reife nicht und hatten zum Teil keinen Schotenansatz. Positiv fielen die alte Sorte ,Merlin' und die 2017 und 2016 neu zugelassenen EU-Sorten ,Sculptor' und ,Regina' auf, die anscheinend auch unter nicht optimalen Bedingungen abreifen können. Die in der Abbildung vorgestellten Ergebnisse der Körnerernte stellen den Durchschnitt aller Versuchsstandorte dar. Die Datenlage ist durch Ausfälle unzureichend, um Grenzdifferenzen berechnen können. Daher geben die Sorten lediglich an, welche Erträge in Schleswig-Holstein zu erwarten sind. Entsprechende Erträge zwischen 4 und 8 dt/ha werden auch auf der eingangs erwähnten JKI-Karte vorhergesagt.

Dr. Christian Kleimeier Landwirtschaftskammer Tel.: 0 43 31-94 53-334 ckleimeier@lksh.de

EIP aktuell: Ergebnisse des Projekts "N-Effizienzsteigerung im Ackerbau"

Praxistest von angepassten Fruchtfolgen und Düngung

Die operationelle Gruppe "N-Effizienzsteigerung im Ackerbau" hat sich 2015 vor dem Hintergrund sich stark ändernder Rahmenbedingungen für die konventionelle Landwirtschaft im Rahmen einer Europäischen Innovationspartnerschaft (EIP) zusammengeschlossen. Zu den geänderten Bedingungen zählten die anstehende Novellierung der Düngeverordnung, die Anforderungen der EU-Wasserrahmenrichtlinie und der EU-Nitratrichtlinie sowie die Einführung der Greening-Prämie und die damit verbundenen neuen konkreten Vorgaben für die Flächenbewirtschaftung. Für die Landwirte und Berater der Gruppe ergab sich der dringende Bedarf, Maßnahmen im Bereich der Fruchtfolgegestaltung und Düngebedarfsprognose zu identifizieren, die zu einer Steigerung der N-Effizienz und somit auch zur Reduktion von Nährstoffausträgen ackerbaulich genutzter Flächen beitragen können, bei gleichzeitigem Erhalt der Flächenproduktivität.

Als Forschungspartner der operationellen Gruppe ist das Institut für Pflanzenbau und Pflanzenzüch-

tung der Christian-Albrechts-Uni- Der Fruchtfolgesystemversuch des Versuchsguts Hohenschulen der Univerversität zu Kiel mithilfe von Exakt- sität Kiel (Mai 2017) von oben Foto: Klaus Sieling

und Fruchtfolgesystemversuchen sowie Versuchen auf Praxisschlägen in ganz Schleswig-Holstein den Frage- und Aufgabenstellungen des Projektes gemeinsam mit Landwirten und Beratern nachgegangen. Im Fokus standen eine möglichst treffsichere Düngebedarfsermittlung und die Entwicklung angepasster, naturraumspezifischer Fruchtfolgen, die den N-Transfer zwischen Kulturen einer Fruchtfolge optimieren. Hierbei wurde auch die sinnvolle Integration von Körnerleguminosen in Ackerbaufruchtfolgen getestet.

In den Fruchtfolgesystemversuchen wurden ortsübliche mit angepassten Fruchtfolgen verglichen. Im Fokus der innovativen Fruchtfolgen stand die Optimierung des N-Transfers. Durch den Anbau alternativer Folgefrüchte mit hoher Vorwinter-N-Aufnahme sollten die N-Auswaschungsverluste nach Kulturen mit hohen Nachernte-N_{min}-Gehalten minimiert werden. Winterraps, aber auch Körnerleguminosen zählen zu den Kulturen mit typischerweise erhöhten N_{min}-Gehalten in der Nachernteperiode. In den alternativen Vorfrucht-Nachfrucht-Kombinationen wurden Winterraps als Folgefrucht zu Körnerleguminosen und die Zwischenfrucht Rauhafer als Nachfrucht zu Winterraps getestet. Während Winterraps den Stickstoff der Körnerleguminosen direkt nutzen kann, sollte durch den Zwischenfruchtanbau eine Konservierung des Stickstoffes über Winter realisiert werden. Durch Mineralisation der Zwischenfruchtbiomasse im Folgejahr verringert sich dann für eine Sommerung wie Mais der Düngebedarf.

Der Fruchtfolgesystemversuch auf dem Versuchsgut Hohenschulen der Universität Kiel im Östlichen Hügelland lieferte Ergebnisse aus zwei witterungsbedingt sehr unterschiedlichen Jahren. Im vergleichsweise trockenen Winterschiede in den N_{min}-Dynamiken nach Winterraps in Abhängigkeit von den Folgefrüchten erkennbar. Abnehmende N_{min}-Werte in der Zwischenfruchtvariante ließen sich auf die vergleichsweise hohe Vorwinter-N-Aufnahme des Rauhafers (zirka 75 kg N/ha) zurückführen. Teile des aufgenommenen Stickstoffs wurden in der folgenden Vegetationsperiode mit Mais pflanzenverfügbar. Die berechnete optimale N-Düngung lag mit 96 kg N/ha bei Mais nach Zwischenfrucht 27 kg N/ha niedriger als bei einem Maisbestand ohne Zwischenfruchtanbau. Ähnlich sah es im Raps aus, sowohl in der Ernte 2017 als auch 2018 lag die optimale N-Menge nach Ackerbohnen (2017: 179 kg N/ha und 2018: 182 kg N/ha) deutlich unterhalb der optimalen N-Düngung bei einem Winterweizen als Vorfrucht (2017: 193 kg N/ha und 2018: 201 kg N/ha). Diese Ergebnisse deuten auf einen verbesserten N-Transfer durch die alternativen Fruchtfolgekombina- suchsjahren plausible Einschätzun-

ter 2016/2017 waren deutliche Un- Präsentation der Ergebnisse bei der Feldrundfahrt vor einem Jahr

Foto: Till Rose

tionen hin. Da sich weder bei Mais noch bei Raps ein Effekt der Vorfrucht auf die maximalen Erträge zeigte, bedeutet die N-Düngeeinsparung automatisch auch eine Erhöhung der N-Effizienz in diesen Vorfrucht-Nachfrucht-Kombinationen.

In den Versuchen auf Praxisschlägen haben die beteiligten Landwirte ein innovatives Modell zur Düngebedarfsermittlung von Winterweizen unter schleswig-holsteinischen Bedingungen getestet. Die Modellempfehlung wurde mit der betriebsüblichen und der durch die Düngeverordnung festgelegten Düngemenge verglichen. Um die Güte der modellierten Düngeempfehlung zu überprüfen, wurden zusätzlich N-Steigerungsversuche, in denen der Fokus auf den jahresspezifischen Zu- beziehungsweise Abschlägen der dritten N-Gabe lag, angelegt.

Das Modell lieferte in allen Ver-

gen in Bezug auf die Anpassung des N-Düngebedarfs zur dritten Gabe. So konnte beispielsweise schon zu Vegetationsbeginn 2017 erkannt werden, dass die N-Verluste in der vorangegangenen Auswaschungsperiode besonders niedrig waren und daher ein erhöhter Nitratvorrat im Boden wahrscheinlich war. In den Exaktversuchen blieben die Bilanzüberhänge bei Düngung nach Modellempfehlung immer unterhalb von 50 kg N/ha, wobei gleichzeitig häufig höhere Deckungsbeiträge gegenüber der Düngebedarfsermittlung nach Düngeverordnung erzielt wurden.

Bei regelmäßigen Workshops und Feldrundfahrten haben sich die Mitglieder der operationellen Gruppe sowie interessierte Fachleute über Fortschritte und Zwischenergebnisse des Projektes informiert. Hierbei wurde immer wieder angeregt diskutiert und anstehende Entscheidungen konnten gemeinsam getroffen werden. Im

Rahmen des nur dreijährigen Projektes konnten verschiedene Ansätze im Bereich Fruchtfolgegestaltung sowie optimierter Düngebedarfsprognose, die zu einer nachhaltigeren Landwirtschaft beitragen, in der Praxis getestet werden. Das unter schleswig-holsteinischen Bedingungen geprüfte, innovative Düngungsmodell für Winterweizen ist auf der Internetplattform www.isip.de verfügbar und kann von jedem Landwirt und Berater zur Ermittlung des schlagund jahresspezifischen Düngebedarfs genutzt werden.

Maren Rose Christian-Albrechts-Universität zu Kiel Tel.: 04 31-8 80 43 98 rose@pflanzenbau.uni-kiel.de

Prof. Henning Kage Christian-Albrechts-Universität zu Kiel kage@pflanzenbau.uni-kiel.de

Abbildung 1: N_{min}-Dynamik (Tiefe: 0 bis 90 cm) nach der Winterrapsernte 2016 nach Winterweizen und Zwischenfrucht

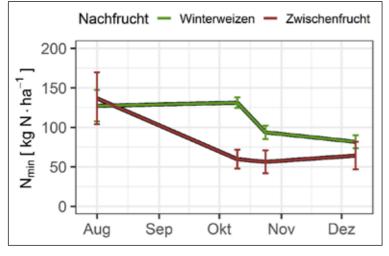
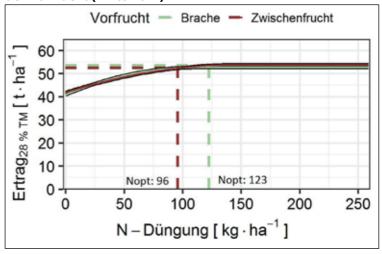



Abbildung 2: Ertragsfunktion von Mais in Abhängigkeit von der Vorfrucht (Ernte 2017)

